METEORITE TIMES
Serving The Meteorite Community Since 2002

2014 July
WWW.METEORITE-TIMES.COM
Meteorite Times Magazine

Contents
by Editor

Featured Articles

Accretion Desk by Martin Horejsi
Jim's Fragments by Jim Tobin
Meteorite Market Trends by Michael Blood
Bob's Findings by Robert Verish
Micro Visions by John Kashuba
Norm's Tektite Teasers by Norm Lehrman
Mr. Monning's Collection by Anne Black
IMCA Insights by The IMCA Team
Meteorite of the Month by Editor
Tektite of the Month by Editor

Terms Of Use

Materials contained in and linked to from this website do not necessarily reflect the views or opinions of The Meteorite Exchange, Inc., nor those of any person connected therewith. In no event shall The Meteorite Exchange, Inc. be responsible for, nor liable for, exposure to any such material in any form by any person or persons, whether written, graphic, audio or otherwise, presented on this or by any other website, web page or other cyber location linked to from this website. The Meteorite Exchange, Inc. does not endorse, edit nor hold any copyright interest in any material found on any website, web page or other cyber location linked to from this website.

The Meteorite Exchange, Inc. shall not be held liable for any misinformation by any author, dealer and or seller. In no event will The Meteorite Exchange, Inc. be liable for any damages, including any loss of profits, lost savings, or any other commercial damage, including but not limited to special, consequential, or other damages arising out of this service.

© Copyright 2002–2014 The Meteorite Exchange, Inc. All rights reserved.

No reproduction of copyrighted material is allowed by any means without prior written permission of the copyright owner.
This amazing NWA-something-or-other is a Ringwoodite-rich brecciated L6 chondrite from the hot desert. More than a few pieces similar to this were recovered a decade or more ago, but very few contain an oriented brecciation like this one.

The curvature of the fragmentation is unusual given the extreme violence applied to this slice’s parent body in order to produce such breakage.
Black shock veins and nickel-iron nodules surround many of the fragments. As I've noted before with breccias, this a geologic photograph of a impact forever preserving the record of its rough childhood.

It's interesting that the rectangular fragments have a similar form in many ways. I fancy it a small Stonehenge from space with blocks on blocks in ordered arcs.
Like streets through a city, the shock veins mark the traffic lanes around the building and open space. Once flowing like rivers, the filler between fragments cemented position for billions of years until exposed to light only recently.

Until next time....
Edeowie Glass Revisited
James Tobin

I do not usually watch the programs on television about alien from the past that have landed on Earth. But I was changing channels recently and found myself at one of those programs. After just a few minutes I had heard several wrong statements and enough bad conclusions drawn from unrelated facts to last me a few more years. But, there was mention of places where glass is found on the surface of the ground and that the areas are radioactive. The program’s speakers; the alien investigators must assume we believe what they say and present their dubious information as fact often disguised as clever questions. Are there radioactive areas on the Earth that have glass which is the result of great battles with atomic weapons fought by aliens in the far distant past? I don't know if there are such places that are radioactive. But, there is one place that is and that is the Trinity Atomic Bomb Test Site. Many years ago I selected a piece of trinitite from a group of choices using a Geiger counter. So I have a rather active piece.

This is a specimen of Trinitite from the first atomic bomb test. As can be seen it is rather smooth on the top side. It remains slightly radioactive. Pictures of the area after the blast show a surface covered with small clumps of trinitite not a continuous layer. This writer sees the heat pulling the surface material together into clumps that provided some insulation to the deeper sand. The poor fusing except on the surface testifies to what we know from observing the event that the extreme heat was short lived.

So far nothing I have written has anything to do with meteorites or tektites or impacts but I am getting there I promise. Seeing that TV program got me thinking again about the pieces of Edeowie Glass that I have. With an estimated age of 700,000 years I figured they would have no radioactivity. But I would give them a test nevertheless. We know that Libyan Desert Glass is most likely from an air-burst explosion that melted the sand of the Egyptian desert. Most indications point to the same type source event for Edeowie glass. However, Edeowie Glass looks much more like Trinitite than LDG. The first thought is that there was less heat and a different type soil. The adhering bits of native rock and much different texture on the bottom do speak to a different melting event. With that in mind nothing we know of fits the evidence for Edeowie Glass as well as melting by a cosmic body hitting the atmosphere. There is no visible crater in the area of Australia where Edeowie Glass is found. But, after the amount of time since formation much of a surface feature could have been eroded away.
This group of Edeowie Glass specimens offers a good idea of the nature of the glass. It is a little thicker than most specimens of Trinitite. It is slightly better melted but still not well fused. The edges that appear to be broken surfaces often show with closer examination that they are smoothed and heat polished. This suggests that they like Trinitite they shrunk as they formed and may not have been a continuous layer of glass.

Edeowie Glass is often found resting on small outcrops of what is described as burned soil. The glass is found in a small area which speaks against its origin from mechanisms such as lightning. In an area of similar terrain there would be no reason to think that lightning would only strike and form glass in one small area. Edeowie Glass is also never found as tubular specimens which is quite characteristic for fulgurites. Years ago I wrote on Edeowie Glass soon after getting some specimens and much of this is a repeat for those who have read that article. What is still striking to me is the similarity of Edeowie Glass to the atomic bomb glass from New Mexico.
Just below the surface of both glasses there is a bubbly interior as seen in these photos. On both types of glass there are tiny pinholes on the surface from bubbles that popped just before the material cooled to a state too hard for any more gas to break the surface. The Edeowie Glass does show some flowing that is not as common with Trinitite. Again brief heating and poor fusing with no time for the glass to become homogeneous is indicated for both types.

The bottom side of pieces of both glasses are poorly melted and often have adhering small pebbles. In my tests for radioactivity I found that the top melted surface of my specimen had much more activity than the bottom side. As expected the Edeowie Glass showed no activity at all. When I say that my specimen of Trinitite is active it should be pointed out that it is still not very radioactive. With the shield removed so the Geiger tubes are as exposed as possible the particle counts per 30 second integration averaged 229.78 from the top of the specimen. Background in my office is 15.9 counts with the same length of time with the tubes unshielded. With the Geiger tubes shielded the background count is 11.9 particles. So it would seem that I have a few particles that do not penetrate the shield and may be from sources in my office and not cosmic ray in origin. The Edeowie Glass was dead radioactively speaking. It yielded a count of 15.875 instead of 15.9 which was background. Longer runs than 10 samplings might close that to exactly background instead of the tiny bit less. As I mentioned earlier the radioactivity of the Trinitite is far less from top to bottom. The specimen giving off 229.78 counts from the top gave off only 88 particle counts in a 30 second interval from the bottom.

It seems that every meteorite fall that gets much publicity will have buried in the reporting something about a police officer or some official testing the meteorites for radioactivity. I did not expect to find any activity after 700,000 years. Was there any originally? I don't personally see why there would be. Nothing in the meteorite or comet would be radioactive the way an atomic bomb is. And I think even alien investigators would admit that 700,000 years ago is too long for most of their wild alien encounter theories.

Fortunately, we have not experienced a meteorite air-burst that melted the soil into glass. Chelyabinsk did great devastation but the air-burst was high in the atmosphere. The Tunguska event in 1908 happened in such a remote area that it took nearly two decades to mount an expedition. Yet there were reports of tremendous heat. The extent of the trees that were burned reinforces the fact that there was great heat. Was there enough to melt soil if the place had not been a wet forest and bog? I do not know. If the same event happen in a desert would there have been melted glass?

Looking at the glass from several impact events I still see a grading of quality. Fine glass like that from the LDG event, to good glass like Darwin and some of the Zhamanshin glass, down to poorer quality glass like perhaps Edeowie Glass. Impact events have so many factors that can change what products are produced. It takes a better scientist than I to try and predict what quality glass will result from a certain soil and a certain size impactor with a certain speed hitting at a certain angle or air bursting at a certain altitude. What is easier to get hold of is that there will be great heat and sometimes glasses are formed. Edeowie Glass has plenty of evidence in its favor pointing to a cosmic body explosion origin. But, it seems possible that it may have formed in an event that delivered energy to the ground only as strong as that which happened at the Trinity Atomic Bomb Site. Only completely melting the top of a piece and fusing the soil and pebbles to this top layer. There are pieces of Edeowie Glass that are reported to preserve impressions of plant material and holes from tree trunks. My first thoughts are that the event was short in duration and very localized and larger than Trinity. But I doubt it was from an alien atomic weapon 7000 centuries ago.
Meteorite Market Trends
by Michael Blood

This Month’s Meteorite Market Trends

by Michael Blood

Please Share and Enjoy:
Over the past decade, various people have contacted me asking for help in getting their “meteorite” identified. In recent years, what with meteorites being mentioned more in the media, there isn’t a week that goes by that I don’t get asked, “How much is my rock worth?”. But not one of those rocks was ever a meteorite; it was always a “meteor-wrong”.

I’m not complaining, because a lot of my colleagues get contacted with similar questions, but many more times than me. In particular, are those webmasters with highly-ranked websites, as well as, those members of academia that have a “web presence”, and in doing so, have made themselves more approachable by the general public. How they ever get any work or research done, I’ll never understand. But recently, I experienced what that must be like.

One day, I was contacted by an associate producer for the Pawn Stars program on the History Channel. They wanted me to appraise some meteorites that viewers were trying to bring onto the show to “pawn”. The producer never admitted it, but I’m sure I wasn’t the first “expert” that they contacted. Nevertheless, they had a lot of specimens that “finders” were wanting to drag into the pawn shop.

Well, guess what? None of them were meteorites. Every one of them was a meteor-wrong. Now, the meteor-wrong plague was a problem that had extended to the entertainment industry.

But the associate had already sold the Executive Producer and Director on filming a “meteorite episode” and now they were desperate. They asked me what I thought about an episode involving a meteor-wrong, but I talked them out of that idea. Then they told me that they found someone who had found a large iron meteorite near Barstow in the California Mojave Desert, but later when they told the finder I was going to conduct an examination and appraisal, the finder immediately changed his story and confessed that he bought it in a garage sale. It was then that I learned I was to be part of the episode and that my meteorite ID and appraisal was to be part of the filming. They finally found a real meteorite for me to appraise in the planned episode. But that’s another story.

What I’m trying to say in this story is that I’m not proud of my appearance on Pawn Stars, but I am proud that I had the opportunity to keep a batch of meteor-wrongs and transported meteorites off of TV, off of the market, and out of collections.

After that Pawn Stars episode aired where I made my initial appearance as the “meteorite expert”, a lot more people started to contact me with their “meteorites”. And the deluge of emails and phone calls is still increasing.
Just trying to be polite and replying to every one of them is becoming too time-consuming. So, I’ve decided to do something. I’ve postponed my planned article and have decided that this month’s article would, instead, address the “meteor-wrong problem”. In addition, I wanted to make a compilation of meteor-wrong images that I could refer to the people that were contacting me. I could then point to this gallery and say to those people, “See, you’re not alone. Your specimen is very similar to all of these other rocks that are NOT meteorites.”

[Yes, I know this has already been done (and I might add, in very excellent fashion) by Randy Korotev and Ken Newton, but I wanted to make a webpage that was more personal.]

This latest influx of meteor-wrong images made it even more apparent to me that there were many similarities among them. I noticed that most meteor-wrongs can fit into 3 broad categories:

Artifact iron – - (I’ve broadened this term to include any malleable iron or alloy that isn’t an iron meteorite.)

Iron oxide – - (This is a broad grouping that includes hematite and magnetite, as well as any basalt or jasper that attracts a magnet. Personally, I prefer to exclude any “iron shale” that can be proven that it originated from an iron meteorite.)

Slag – - (I’ve broadened this term to include any material that is man-made, or the residue from a manufacturing process, such as any ore that only partially melted.)

Since two out of the three above categories are outside the domain of geological sciences, I now refer people to metallurgists. I’m serious. Since the vast majority of meteor-wrongs sent to me are either slag or metal, why would I send someone to a Junior College Geoscience instructor for an ID?

Here is an example of what I mean:

Even if you are lucky enough to find someone that you can pay and get a detailed quantitative analysis, you rarely get a detailed explanation of what the results mean. Below, the suspect “meteorite” contains no malleable iron or natural silicates, yet it is primarily composed of silicon and iron. The proper analysis of the test results should conclude “silicide of iron”, but that would require the expertise of a metallurgist. This is not an analysis that you should expect a community college geoscience instructor to make. Usually, no analysis is made, and the client is left to decipher the oracle on their own.

![Image of a specimen tested](image)

And here is an image of the specimen that was tested:
Here is another example:

In this instance the finder had already spent a good deal of time and money getting his rock examined by a variety of experts (he used the term “geologists” but I couldn’t confirm that, let alone get the actual name of these experts). The rock was even analyzed (he had a print-out of test results). I wasn’t sure why he contacted me, but he finally got around to asking me if I would broker his find? I told him that I did know buyers, but that I would have to see his specimen first. That same day he drove 100 miles to meet me. We met for lunch, but “the drinks were on me” (which is a euphemism, meaning that I had to inform him that his rock was a meteor-wrong).

And here is an image of the (large) specimen that was tested:

There was ample opportunity for someone to tell this finder that he did not have a meteorite, but his “experts” ended up wasting his time and money. But what I found most problematic was the print-out of the test results. It clearly showed that he did not have an iron meteorite. The Fe% was too low, and it was too high to be a chondrite, but it was perfect for Fe3O4 (magnetite). The finder had no trouble understanding my explanation, and was very peeved that he paid for testing but wasn’t given any proper interpretation of those test results.

My take on all of this is that the “meteor-wrong problem” is multi-faceted. Yes, there are too many of them, and yes, there are more and more of them “coming out of the woodwork” (for a variety of reasons). But with respect to the people with MWs contacting me, their common complaint is that they don’t know where to go, or who to ask. Hard to believe in this modern age of Google, but apparently the Internet is failing these people.

Aside from the problem of researchers wasting their time with meteor-wrongs, my concern is for those people who
have succeeded in navigating the web and have found “experts” and “geologists”, yet are still unable to get a proper ID for their rock. The process has failed those people. And it compounds the “meteor-wrong problem”. It’s as if no one wants to ID a rock, let alone tell a person that their find is a meteor-wrong. We could use more help from those in the geoscience field in this regard. Here’s a suggestion. All requests for a rock/meteorite ID should go through a Geology Department before being handed over to a researcher. In fact, many meteoriticists are already turning away packages and are no longer accepting these requests.

But as long as people think that, what they have found is “for sure” a meteorite, they will continue to pursue contacting a meteorite-expert in order to confirm their hopes. Hopefully, this gallery of meteor-wrongs will give those hopeful people reason to pause, and to consider that their rock might be terrestrial. Now their task is to find an expert in terrestrial rocks.

Gallery of Meteor-wrongs:

the following images were taken by people who were trying to get their specimens identified.

They are all meteor-wrongs.

Meteor-wrong – probably a ferro-manganese alloy – (man-made)

Meteor-wrong – various forms of “slag” – (man-made)
Meteor-wrong -- probably a variety of "slag" -- (man-made)

Sometimes the meteor-wrongs can be colorful.

Meteor-wrong -- probably a ferro-manganese alloy -- (man-made)
Meteor-wrong -- probably another variety of "slag" -- (man-made) Sample that was sent to me was relatively copper-rich, but it was still a man-made material, another type of slag.

Can't confirm the ID of this rock just by this image. I would have to see this specimen first-hand, at least, before ruling-out that it is not a meteorite. Doesn't look man-made. Looks like it belongs to my Group#2 (iron oxide).
Now, this specimen I did see first-hand. And it was such a disappointment that it was “terrestrial” (a mix of various iron oxides) that the finder just handed it to me and said, “Just take it away.” I did, and my wife still has it in her rock-garden.

Post Script:
In the future, additional meteor-wrong images will appear HERE.

References:

Ferromanganese – one of Ken Newton’s “meteorite-identification.com” very informative webpages.

MeteorWrongs – an extensive “photo gallery” of rocks that people thought were meteorites, part of Randy Korotev’s very instructional website.

Ferrochromemanganese – this Cascadia Meteorite Laboratory webpage is on the Portland State University website.

My previous articles can be found *HERE*

For more information, please contact me by email: Bolide*chaser
Earlier this year Arizona State University released about a hundred surplus thin sections. This was through a trade with meteorite dealer Anne Black. I bought a few of these slides from her. I chose the only Romero H4 she had because it had an inclusion.

The write up in the Meteoritical Bulletin Database gives only basic information on Romero so I searched further. I found a 1983 paper by Andrew L. Graham of the British Museum that actually addresses an inclusion in Romero. His Acknowledgement at the end of the paper was an even bigger surprise: “I thank Dr. C. B. Moore, Center for Meteorite Studies, Arizona State University, Tempe for the loan of the thin section of Romero (454.4X) containing the inclusion.” ASU! I checked my thin section and there, etched on the back, is ROMERO 454.4x. Mine might not be the same section since the paper cites microprobe data and my section is covered making such work impossible. Also, ASU’s Master list mentions two thin sections in its inventory. Still, the descriptions of Romero and the inclusion are a great fit.

Here I excerpt Dr. Graham’s paper to caption my photos:

I thank Dr. C.B. Moore, Center for Meteorite Studies, Arizona State University, Tempe for the loan of the thin section of Romero (454.4 x) containing the inclusion.
The Romero meteorite is an H3-4 chondrite which was found in Texas in 1938. It contains fairly abundant chondrules which are easily seen on a cut and polished surface. In thin section the general texture of the stone is that of chondrules and chondrule fragments set in a fine grained matrix. About 20% of the stone is composed of easily recognized rounded or sub-rounded chondrules . . .
Occasionally these chondrules are armoured by metal but generally the metal is homogeneously distributed within the matrix.
(A) clast in the Romero chondrite which is texturally and chemically distinct from both matrix and chondrules . . . The inclusion approximates to an ellipsoid in shape with a major axis of approximately 7 mm.
(A) metal-poor inclusion . . .
The boundary between the inclusion and the surrounding matrix is not always well defined but the textural distinction remains and the brown microcrystalline ‘glass’ differs obviously from the darker interstitial material present in the bulk of the meteorite.
The Variation in texture of the Romero inclusion is not random; one side has more ‘glass’ and more finely crystalline olivine than the other, which is similar to porphyritic olivine chondrules. This Variation suggests there was a cooling-rate gradient across the inclusion at the time of nucleation of the olivines and during the subsequent cooling.
There is no definite boundary between the various textures within the inclusion but there is a suggestion of layering which has been disturbed.
The inclusion is poorer in metal and sulphide than the rest of the meteorite and these phases, where they adjoin in the inclusion, are consistently inter-grown in a globular fashion, indicative of rapid cooling to below 900°C. This texture is rare in the bulk of the stone but it does occur.
(O)livines set in a pale brown, microcrystalline and/or glassy matrix.
Ivory Coast tektites (“Ivoirites”) have long been the most difficult tektite to obtain. To say “impossible” would not be far off the mark. Only a few hundred have ever been recovered, and given their homeland’s propensity for war and strife, it has been decades since anyone has gone there with the purpose of searching for more. But recently, against all odds, an old collection of about 120 specimens has surfaced, and collectors, museums, and universities are scrambling to add examples to their collections while they can.

The story of their discovery was detailed in a March, 2014, *Meteorite Times* article written by Dr. Alain Carion and translated by Anne Black. In summary, the collection was assembled by Ms. Madeleine Bouguarel from a family cotton plantation near Daoukro in western Cote d’Ivoire. They were part of a small lot of personal possessions carried out of the country when the family fled political unrest about 1970. A couple of years ago, a great-granddaughter of Bouguarel’s, who apparently understood nothing of their significance, found them in an attic and offered a selection for sale at a Paris flea-market. A
Collector recognized them for what they were, and arranged to purchase the entire collection, which he in turn offered to well-known Parisian dealer, Dr. Alain Carion. Based on an atypical sample, Alain initially turned them down, but a year later decided to take a closer look at the entire assortment and realized that he was being offered an historical opportunity. The rest of us got our first look at an initial offering at the 2014 Tucson show, and another lot was offered at the recent show in Ensisheim.

Termed “the rarest of all tektites” by Dr. Carion, the collection (and the majority of all the previously reported specimens) are mostly spherical to sub-spherical. Most are bright and fresh, although a few show minor terrestrial abrasion. Research has quite firmly established that they were ejected from an impact at the 10.5 km diameter Bosumtwi crater in Ghana about 1.07 Ma ago.

Figure 2: A bright 8.10 gm spheroid, a classic example of the most typical of the Ivoirites.
Next to the historic Ensisheim main mass.

The annual Ensisheim show is the nearest meteorite show to me in the UK and is somewhere that I had been intending to visit for many years. I had vicariously enjoyed the show from looking wistfully at all the photos and videos that were shared every year and had also been subject to much persuasion from regular show goers and friends Graham Ensor and Luther Jackson. And so when the British and Irish Meteorite Society of which I am a member was asked to put on a display of UK and Irish meteorites at the show it was definitely the right time to put in an appearance at Ensisheim. The following is my trip report from the 2014 Ensisheim show and hopefully gives a good flavour of what it is like to attend. I would highly recommend the show to anyone who has not yet been and I for one will certainly be back again :-)
This feature is devoted to one of the personalities within the meteorite community. This month we are delighted to share an interview we had with Gaetan Cormier of http://gcmeteorites.blogspot.com/

Gaetan Cormier Interview

Paul Harris

What or who got you interested in meteorites and how old were you when you got your first meteorite?

I've been doing amateur astronomy since 1985. What actually got me into astronomy was the return of Halley's comet. Comets where a big thing for me and I read as much as I could on the subject.

In 1991, I joined the Montreal Centre of the RASC, the same Centre where David Levy went at a younger age and was our honorary president. I even had the chance at that time to have an observing night with him at our observing spot back then at Mount Sutton in Quebec.

Then, June 14th 1994 came with the fall of the St-Robert meteorite here in Quebec. To make a story short, that got me hooked and I had the chance the following september to hold in my hands some of the samples of the St-Robert meteorites.

What was your first meteorite?

Two meteorite dealers/chasers where really influential for me around 1995/96 when internet came really accessible. Robert Haag was the one who sold me my first meteorite, it was a nice end-cut of Forrest (b) of about 17g. Also at the time I "virtually" met Mike Farmer with whom I talked over the phone quite a while... my ex-wife was yelling at me because of the long distances phone charges... hahahahah! I beleive my first meteorite from Mike was either a Gao or Davy (a)

Do you have special areas of interest that you focus on in regards to meteorites (thin sections, photography, chemistry, age dating.. etc)?

Not really, for me all types of meteorites are interesting, from plain Ordinary Chondrites to Carbonaceous chondrite I find fascination in them all. A friend of mine got a thin section recently and I had the chance to put this...
under a microscope with polarized light and I really enjoyed it.. looking forward of getting a couple of those

(MT) Does your Family share in your interest in meteorites?

(GC) They are not crazy about meteorites like I am, but they sure enjoy when I show them some new ones I get from time to time. My youngest daughter Lea (9 years old) asked me last year to come to her class to talk about meteorites with the kids and they really freaked out when I gave them each a small Canyon Diablo :)

(MT) Do you have any special approaches to collecting? (Type collection, only stones, only irons, only by aesthetics, etc. or any and all that you like.)

(GC) Not really, I will get what I find nice as much as if a meteorite is of a rarer type but my favorite type are ordinary & carbonaceous chondrites

(MT) Is your collection displayed or kept in a dry box or both?

(GC) For now my collection is still very small... Due to past financial situations, I had to sell off my collection at two different occasions. This type is situation is far behind now and hopefully my collection will grow over time. My collection is kept in a drawer system. Eventually, if I get my hands on a nice glass display cabinet, I will display them.

(MT) In what ways do you use your computer for meteorites. (met-list, Social Media, meteorite research, shopping, etc)

(GC) The computer plays a big role I think for all of us. I use mine for my website and for shopping on dealers website and eBay

(MT) Do you ever hunt for meteorites?
(GC) Not having a budget for travel makes this difficult, so my meteorite hunting has been limited to the St-Robert strewnfield.

(MT) What is your favorite meteorite in your collection?

(GC) My favorite meteorite is my little 2.54g St-Robert fragment. It’s small but at least I got one!!!

2.54g St-Robert fragment

(MT) What meteorites are currently on your wish list?

(GC) I would love to have a nice slice of Chelyabinsk something around 20g showing some impact melt, would make my happy. I think Chelyabinsk is simply amazing because of it’s story. It’s a meteorite that has an history that will never be forgotten at that people will talk about for centuries to come!

(MT) Do you also collect related materials like impact glasses, breccias, melts, tektites, shocked fossils, native iron rocks etc?

(GC) Actually, I have a bigger collection of impact related material than meteorites. I find these as fascinating and my wallet likes it too because it’s (most of the time) cheaper. :)

2.54g St-Robert fragment
Alamo Breccia

(MT) Do you prepare any of your own specimens? (cut, polish, etch, etc.)

(GC) I do! I’m a member of the Montreal Gem & Mineral Club and we have quite a few saws and polishing machines available to us, so I do prepare some samples.

Thank you for your time!
Meteorite Times Magazine

Meteorite of the Month: Ensisheim Meteorite
Paul Harris

Our Meteorite of the Month is kindly provided by Tucson Meteorites who hosts The Meteorite Picture of the Day.

The 53.8 kg main mass of the famous Ensisheim meteorite by Herbert Raab

Submit Pictures to Meteorite Pictures of the Day
Please support Meteorite-Times by visiting our sponsors websites. Click the bottom of the banners to open their website in a new tab / window.
Once a few decades ago this opening was a framed window in the wall of H. H. Nininger's Home and Museum building. From this window he must have many times pondered the mysteries of Meteor Crater seen in the distance.

Photo by © 2010 James Tobin